
PHYSICAL REVIEW C 68, 034909 ~2003!
Chromodynamic Weibel instabilities in relativistic nuclear collisions
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Employing a previously derived formulation, and extending the treatment from purely transverse modes to
wave vectors having a longitudinal component, we discuss the prospects for the occurrence of Weibel-type
color-current filamentation in high-energy nuclear collisions. Numerical solutions of the dispersion equation
for a number of scenarios relevant to RHIC and LHC suggest that modes with~predominantly transverse! wave
numbers of several hundred MeV may become moderately agitated during the early collision stage. The
emergence of filamentation helps to speed up the equilibration of the parton plasma and it may lead to
nonstatistical azimuthal patterns in the hadron final state.
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I. INTRODUCTION

In the exploration of high-energy nuclear collisions@1#,
the possible occurrence of collective phenomena is of p
ticular interest. The present note reports on studies of c
filamentation during the early collision stage.

Within the framework of electrodynamics, Weibel@2#
pointed out that self-excited transverse modes exist in p
mas with anisotropic momentum distributions and he deri
their rate of growth from the linear response of the collisio
less Boltzmann transport equation~also known as the Vlasov
equation!. This treatment was later adapted to counterstre
ing fluids of nucleons@3,4# or partons@5–9# and it was found
that also these systems possess the Weibel filamentatio
stability. Although idealized counterstreaming may not
realized, it is expected that a significant degree of lo
momentum-space anisotropy will occur at the early stage
relativistic nuclear collisions at the Relativistic Heavy-Io
Collider ~RHIC! or the Large Hadron Collider~LHC! and
investigations have been carried out of the associated We
filamentation modes in chromodynamic plasmas@10–12#.

The present work employs the approach formulated
these latter investigations in an attempt to achieve a m
complete and quantitative understanding of the Weibel fi
mentation phenomenon in high-energy nuclear collisio
After recalling the most important developments made
Refs. @10–13#, we first discuss the general features of t
filamentation phenomenon and considering, for the first tim
modes that are not simply transversally aligned. For plas
relevant to RHIC or LHC, we present numerical results
the resulting growth rates. Furthermore, for suitable ideali
dynamical scenarios, we extract the collective amplificat
coefficients and elucidate the importance of the rapid lon
tudinal expansion as well as the equilibration caused by
lisions among the partons. We conclude by discussing
possible dynamical implications of these collective mode

II. FORMAL FRAMEWORK

The present study is based on the developments m
previously in Refs.@10–13# and we recall here the most re
0556-2813/2003/68~3!/034909~11!/$20.00 68 0349
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evant elements of those. The treatment is made within
semiclassical transport framework in which the partons
described by their phase-space densities. An early review
quark-gluon transport theory was given by Elze and He
@14#, while a very recent review may be found in Ref.@15#.

In the present problem, we perturb a plasma of qua
antiquarks, and gluons whose phase-space densities are
form in space and stationary in time. Furthermore, they
distributed equally among the various color channels, so
corresponding background densities are color singlets.
simplicity, the partons are assumed to be massless, so
energies areEp5upu.

There are, in principle, separate phase-space densitie
each quark flavor and each spin component, but since
all contribute additively we may consider just one gene
quark density with a fourfold flavor-spin degenerac
Q(x,p), wherex[(t,r) denotes the four-position andp is
the quark three-momentum. Similarly, we consider just o
common phase-space density for the antiquarks,Q̄(x,p).

In addition to being 434 Dirac tensors, the phase-spa
densitiesQ and Q̄ are N3N color matrices in the SU(N)
gauge group that have singlet~colorless! and multiplet~col-
ored! parts:

Q~x,p!5Q0~p!1dQ~x,p!, ~1!

Q̄~x,p!5Q̄0~p!1dQ̄~x,p!. ~2!

The singlet parts represent theq and q̄ background phase
space densities,Q05I f q and Q̄05I f q̄ ~where I is the N
3N unit matrix in color space!, with the phase-space numbe
densities for each color being

f q~p!5
1

N
Tr@Q~x,p!#, f q̄~p!5

1

N
Tr@Q̄~x,p!#. ~3!

The induced disturbancesdQ and dQ̄, which represent de-
viations from the color neutrality, are assumed to be mu
smaller than the colorless background terms. They may
expanded on theN221 SU(N) group generators$ta%, which
©2003 The American Physical Society09-1
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satisfy Tr@ tatb#5 1
2 dab ~the trace is with respect to the colo

indices!, and the individual color componentsQa andQ̄a can
be extracted by projection,

Qa~x,p!52Tr@ taQ~x,p!#, Q̄a~x,p!52Tr@ taQ̄~x,p!#.
~4!

Because the group generators are traceless, only the colo
part of Q, i.e., Q0, contributes tof q , while only the colored
part dQ contributes toQa .

The gluon phase-space densityG(r,p) is an (N221)
3(N221) matrix in the adjoint representation, which
spanned by theN221 matrices$Ta%, whose elements are th
SU(N) structure constants, (Ta)bc52 i f abc . The identity
f abcf dbc5Ndad implies that Tr@TaTb#5Ndab. We may thus
write

G~x,p!5G0~p!1dG~x,p!5 f g~p!I1TaGa~x,p!, ~5!

where the individual elements are

Gab~x,p!5 f g~p!dab2 i f abcGc~x,p!. ~6!

The color singlet partG0 is the uniform and stationary gluo
background distribution andf g(p) is the associated phase
space number density in each of theN221 different color
channels labeled bya. The various color components can b
extracted by trace operations:

f g~p!5
1

N221
Tr@G~x,p!#5

1

N221
Gaa~x,p!, ~7!

Ga~x,p!5
1

N
Tr@TaG~x,p!#5

i

N
f abcGbc~r,p!. ~8!

The disturbances in the parton phase-space densities
tribute additively to the induced current densitiesj a ,

j a
m~r,t !5

1

2
gE d3p

~2p!3

pm

Ep
@Qa~r,p,t !2Q̄a~r,p,t !

12i f abcGcb~r,p,t !#, ~9!

whereg is the QCD coupling constant,g254p\cas .
In the collisionless idealization, the parton phase-sp

densities satisfy Vlasov-type transport equations:

pmDmQ~x,p!1
g

2
pmH Fmn~x!,

]Q~x,p!

]pn
J 50, ~10!

pmDmQ̄~x,p!2
g

2
pmH Fmn~x!,

]Q̄~x,p!

]pn
J 50, ~11!

pmDmG~x,p!1
g

2
pmHFmn~x!,

]G~x,p!

]pn
J 50, ~12!

where$•,•% denotes the anticommutator. The covariant d
rivativesDm andDm act as follows:
03490
ess

on-

e
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Dm5I ]m2 ig@Am~x!,•#, Dm5I]m2 ig@Am~x!,•#,
~13!

with Am andAm being the potentials in the fundamental a
adjoint representations, respectively,

Am~x!5Aa
m~x!ta , A ab

m ~x!52 i f abcAc
m~x!. ~14!

The stress tensor in the fundamental representation isFmn

5]mAn2]nAm2 ig@Am ,An#, while Fmn denotes the field
strength tensor in the adjoint representation.

With the phase-space densities of forms~1!, ~2!, and~5!,
the transport equations, which are linearized with respec
dQ, dQ̄, and dG, can be explicitly solved in terms of th
free Green’s functions. Substituting these solutions into
pression~9! for the current, one finds the Fourier transfor
of the induced current:

j a
m~k!5Pmn~k!Aa;n~k!, ~15!

where k[(v,k). The polarization tensorPmn(k) does not
carry a color index, since the potential in a given color cha
nel, Aa

m , can induce color currents in only that channela. It
is given by

Pmn~k!5g2E d3p

~2p!3

pm

Ep
Fgnl2

pnkl

psks1 i eG] f eff~p!

]pl
,

~16!

with the effectivebackground phase-space density being

f eff~p![
1

2
f q~p!1

1

2
f q̄~p!1N fg~p!. ~17!

The result~15! is similar to the electromagnetic case, th
only difference being the replacement of the backgrou
phase-space density of charge carriers,f e1ē(p), by theeffec-
tive background phase-space density contributing to eac
the N221 individual color channelsa. In order to simplify
the analysis, we assume that all the parton species~quarks,
antiquarks, and gluons! have the same momentum profi
f(p) with *d3pf(p)51. So, f eff(p)'refff(p) where the
effective parton density isreff5

1
6 (rq1r q̄)1 3

8 rg .
Insertion of the expression~15! for the induced current

into the field equation of motion,DmFmn(x)5 j n(x), then
yields an algebraic equation forAa

m(k),

@k2gmn2kmkn2Pmn~k!#Aa;n~k!50, ~18!

which in turn leads to the dispersion equation for the coll
tive modes,

det@k2gmn2kmkn2Pmn~k!#50. ~19!

However, due to the transversality of the polarization tens
kmPmn(k)50, the above equation involving a 434 determi-
nant can be reduced to an equation that involves only
33 determinant. This simplification can be most easily u
derstood in the Coulomb gauge, where the chromoelec
three-vector is given byEa5] tAa . Then Eq.~18! for Aa

m is
9-2
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immediately transformed into an equation forEa and the
dispersion equation for the collective modes then readily
lows,

det@k2d i j 2kikj2v2e i j ~k!#50, ~20!

where the 333 color permittivity tensore has the elements
e i j (k)5d i j 2v22P i j (k). Although the dispersion equatio
~20! has been derived here in the Coulomb gauge, it is ga
independent since the position of a pole in the gluon pro
gator is the same for all gauges, even though the gl
propagator itself is a gauge-dependent quantity~see Ref.
@15#, for example!.

In the subsequent presentation, we study Eq.~20! with the
polarization tensor derived in the collisionless limit, in whic
the treatment is simplest. A general formal justification
adopting this scenario as a first approximation lies in the
that the frequency of the plasma waves is of orderg, whereas
that of the binary collisions is of orderg2 or g4, depending
on the momentum transfer. Thus, for sufficiently small co
pling constantsg, the collective modes have a shorter ch
acteristic time than the collisions and consequently, the
lisions do not influence the waves for short periods of tim
However, in the present case, where the focus is on unst
modes, this argument may not hold, since the character
growth rates tend to be significantly slower than the frequ
cies of the stable modes. Furthermore, the coupling cons
is actually not that small and the parton density is initia
relatively high. Therefore, the dispersion equation~20! de-
rived within the collisionless idealization should be regard
merely as a starting point for obtaining a rough idea of
quantitative importance of the phenomenon. If it appe
warranted, more refined treatments would be called for.

III. GENERAL FEATURES

In the present study, we consider momentum profi
f(p) that are invariant with respect to rotations around thz
axis as well as reflections in thexy plane@it then follows that
f(2p)5f(p)]. Then the profile function depends only o
the magnitude of the momentum component along the s
metry axis,pi5upzu, and the magnitude of the transver
momentum,p'5(px

21py
2)1/2. Due to this symmetry, we ma

generally assume that the wave vector is of the formk
5(kx,0,kz), with kx5k'.0 and kz5ki>0. Finally, since
we are seeking modes for which the frequency is pur
imaginary, we writev5 ig whereg is real.

The elements of the polarization tensorP(k) are

P i j ~k!5g2reffK 2v i
]

]pj 1
v iv jk•v

~k•v !21g2
kl

]

]pl L , ~21!

where ^•& denotes the average over the profile functi
f(p). Since Pxy and Pyz vanish in the present case, th
determinant~20! factorizes into ay part, k21g21Pyy ,
which has no real roots, and anxz part presenting the dis
persion equation of interest,Dk(g)50, where
03490
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Dk[~kz
21g21Pxx!~kx

21g21Pzz!2~kxkz2Pxz!
2.

~22!

Since Dk depends ong only through its square, the root
come in opposite pairs,vk56 igk . Furthermore, it can be
seen thatDk vanishes forg50 since we then have

S Pxx Pxz

Pzx Pzz
D 5S kz^vx@•••#& 2kx^vx@•••#&

kz^vz@•••#& 2kx^vz@•••#&
D , ~23!

where @•••#[@g2reff(2vz]/]px1vx]/]pz)/k•v#. The g
dependence ofP notwithstanding,Dk(g) appears qualita-
tively as a fouth-order polynomial ing, with Dk;g4 for
large ugu. Consequently, in addition to the double root
zero, there is at most one other pair of real roots,6gk . Thus,
for any given wave vectork, the dispersion equation~22! has
at most one positive root,gk .

When the wave vector is perpendicular to the axis of sy
metry,k5(k',0,0), the polarization tensor is fully diagona
Pxz50. Furthermore,Pxx.0, so the dispersion equatio
~22! reduces to

05k'
2 1g21Pzz,

or

k'
2 5v2ezz. ~24!

This equation has a positive root as long ask',kmax, the
maximum being determined bykmax

2 52Pzz(g50),

kmax
2 52g2reffK pz

2

E S ]

]pz
2 2

]

]px
2D L . ~25!

This relation shows that there are Weibel filamentat
modes as long as the momentum profile falls off ‘‘more ra
idly’’ in the transverse direction than longitudinally.

It is readily seen that the polarization tensor remains
affected under a rescaling of its four-vector argumentk
5(v,k),P(ak)5P(k). Thus, sinceP(k) is proportional to
g2reff the entire dispersion equation remains unchanged
the same time that quantity is multiplied bya2. Conse-
quently, if for any given value ofg2reff , the mode with the
wave vectork has the growth rategk , then in a plasma
where the value ofg2reff is changed by the factora2, the
mode with the wave vectorak has the growth rateagk . This
general scaling property is very useful, as it makes it poss
to significantly extend the utility of results obtained for sp
cific scenarios.

As k' is varied from zero tokmax ~keepingki50), the
growth rategk starts out linearly from zero, has a broa
maximum, and then decreases towards zero again. The in
slope (dg/dk')0 is determined by

K vz

]

]pz
L 5K vz

2

vx
21~dg/dk'!0

2 vx

]

]px
L , ~26!

and it increases with the degree of anisotropy.
9-3
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FIG. 1. ~Color online! Contour plot of the mo-
mentum profile functionf(p) for either the
Gaussian~top! or the pQCD~bottom! parametri-
zation, using s'5300 MeV/c and s i
51 GeV/c. The presentation is logarithmic with
four bands per decade.
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For any given value ofk' for which the transverse dis
persion equation~24! has a solution fork5(k',0,0) ~i.e., for
k',kmax), there exists a range of valueski,ki

max(k') for
which the general dispersion equation~22! has solutions for
k5(k',0,ki). @For ki50, the determinantDk , considered as
a function ofg2, starts out from zero and exhibits a negati
minimum before starting its steady growth towards;g2.
The value ofg for which Dk becomes positive is the ass
ciated growth rategk . As ki is increased, the minimum
moves inwards~as does the crossing pointgk) and it even-
tually merges with the maximum at zero. We then ha
]2Dk /]g250 and ki has attained its maximum valu
ki

max(k').#
As the direction of the wave vectork is moved out of the

transverse (xy) plane, the direction of the electric field vec
tor E starts to deviate from thez axis, as does the direction o
the induced currentj. In the non-Abelian plasma, the specifi
behavior is gauge dependent and we shall illustrate it in
Coulomb gauge~Sec. VI!.

IV. CALCULATIONAL SCENARIOS

In order to have a concrete framework for the presenta
of the numerical results, we shall adopt the following sta
dard values for the RHIC and LHC scenarios@16,17#:

RHIC: as50.3, reff~ t050.4 fm/c!56 fm23, ~27!

LHC: as50.1, reff~ t050.3 fm/c!550 fm23.
~28!

Obviously, they represent very rough estimates only and
have tried to err on the conservative side. Larger values
either the coupling constant or the parton density would o
enhance the filamentation effect and the simple scaling p
erties of the dispersion equation~22! makes it relatively easy
to determine what would result if these input values w
changed.

In our studies, we shall employ two different analytic
parametrizations of the momentum profile functionf(p).
The first form is a simple Gaussian:
03490
e

e

n
-

e
or
y
p-

e

l

fGauss~p!5
1

ps'
2

1

A2psz

exp2S px
21py

2

s'
2 2

pz
2

2s i
2D , ~29!

where s'
2 5^px

21py
2&5sx

21sy
2 and s i

25^pz
2&5sz

2 . Since
the results will depend only on the anisotropysz /sx , we
shall adopt a fixed value for the transverse variances'

5300 MeV/c, and then vary the longitudinal widths i . We
note that ^]/]px

2&5^]/]py
2&52s'

22 while ^]/]pz
2&

52 1
2 s i

22 for the Gaussian profile.
As an alternative, we employ a pQCD-motivated profi

which has a polynomial transverse falloff,

fpQCD~p!5
2

p

s'
4

~pT
21s'

2 !3

1

A2psz

e2pz
2/2s i

2
. ~30!

We still take the transverse width to bes'5300 MeV/c and
have ^]/]pz

2&52 1
2 s i

22 while now ^]/]px
2&5^]/]py

2&
522s'

22 . @We have also considered replacing the longi
dinal profile by a Gaussian in the rapidityy5 1

2 ln@(E
1pz)/(E2pz)#, but such a form is unsuitable because of
singular behavior atp'50.#

Figure 1 illustrates shape of these two test profiles. G
erally, for similar values ofs' and s i , the pQCD form
exhibits a slower transverse falloff which~as we shall see!
enhances the degree of instability.

V. TRANSVERSE MODES

In order to illustrate the typical appearance of the disp
sion relation, we show in Fig. 2 the growth rategk for purely
transverse modesk5(k',0,0) as a function ofk' , for a few
selected values of the momentum anisotropy in matter co
sponding to the initial RHIC scenario. The curveg(k') rises
linearly from k'50 with an initial slope that increases wit
the anisotropy@see Eq.~26!#. The curve then exhibits a maxi
mum g0 at the optimal wave numberk'5k0, and then de-
creases roughly linearly towards zero ask' approachesk'

5kmax, with a slope that decreases as the anisotropy
creases. Although the two different momentum profiles yi
qualitatively similar dispersion relations, the slower tran
9-4
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verse falloff of the pQCD form generally increases the d
gree of instability. As a consequence, the maximum w
numberkmax becomes significantly larger and, perhaps m
importantly, the maximum growth rateg0 is also increased
although this effect is only rather modest.

In order to provide a more global impression of the
features, we first consider the dependence of the maxim
wave numberkmax on the various input values~see Fig. 3!.
For the Gaussian profile we have

kmax
2 5g2reff^vzpz&S 1

sx
2 2

1

sz
2D , ~31!

which shows that there are unstable modes as long asz
.sx . The limiting case,kmax50, corresponds to isotropy
sz

25sx
2 @5 1

2 (300 MeV)2#. For the pQCD profile we find

kmax
2 5g2reff^vzpz&S 2

sx
2 2

1

sz
2D . ~32!

Thus, evidently,kmax is now larger and the limiting case
kmax50, is oblate,sz

25 1
2 sx

2 @5 1
4 (300 MeV)2#. The result-

ing values ofkmax are shown in Fig. 3. Sincekmax
2 ;asreff ,

the results for the LHC and RHIC scenarios differ by a fac
of @(ar)LHC /(ar)RHIC#1/25 5

3 , in reflection of the genera
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FIG. 2. The dispersion relation for four initial RHIC scenari
(as50.3,reff56 fm23) with various momentum anisotropies: th
growth rategk for purely transverse modes,k5(k',0,0), as a func-
tion of the transverse wave numberk' , for the Gaussian~top! or
pQCD ~bottom! momentum profilef(p).
03490
-
e
e

m

r

scaling properties of the dispersion equation~24!. Further-
more, sincê vzpz&'^pz&5A2/psz , we obtain the following
fairly accurate approximation:

kmax
2 'g2reffA2

p
szS 1 or 2

sx
2

2
1

sz
2D ;sz . ~33!

More important thankmax is k0, the wave number of the
fastest-growing modes, since these modes will become
dominant in the course of time. It is shown in Fig. 4~top!.
After a sharp initial rise,k0 exhibits a very slow decreas
with increasing anisotropy. For a wide range ofs i values,
the wave number of the fastest-growing modes obtained w
the Gaussian profile is typically around 500 MeV at RH
and 900 MeV at LHC, corresponding to wave lengthsl0 of
2.5 fm and 1.4 fm, respectively. For the pQCD profile the
wave numbers are typically 100 MeV higher. We note th
unless the anisotropy is small, we havek0!kmax.

The behavior of the maximum growth rateg0 is shown in
Fig. 4 ~bottom! and it is qualitatively similar to that ofk0: it
exhibits a rapid initial growth followed by a slow decreas
The maximum growth rate is obtained fors i
'1.5–2.0 GeV/c and the corresponding overall shorte
growth timest051/g0 are 0.90 fm/c and 0.55 fm/c for the
Gaussian profile, respectively, while they are about 2
shorter for the pQCD profile. Thus the pQCD profile, with
slower transverse falloff, leads to somewhat larger grow
rates. However, the overall results are very similar for
two profile forms. In Fig. 4 as well, the scaling feature of t
dispersion equation~24! implies that the LHC curves are
simply a factor of5

3 larger than the RHIC curves. It is thu
fairly easy to infer the behavior of the dispersion relation
any other particular choices of the input parametersas and
reff .

Our results for the transverse modes agree qualitativ
with the analytical results obtained in Ref.@11#.

FIG. 3. The maximum wave numberkmax at the initial timet0 as
a function of the longitudinal momentum dispersions i for Gauss-
ian and pQCD momentum profilesf(p) in the standard RHIC and
LHC scenarios given in Eqs.~27! and~28!. The approximate values
given by Eq.~33! are shown for the RHIC scenario~dots!.
9-5
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VI. GENERAL MODES

As noted above, for any given purely perpendicular wa
vector k5(k',0,0) for which there exists a filamentatio
mode~whose induced current is then perfectly aligned w
the symmetry axis!, there exists an entire range of mi
aligned modes that are also unstable, being characterize
the wave vectork5(k',0,ki), whereki,ki

max(k').
The dispersion equation for these general filamenta

modes is given by Eq.~22!. SinceDk(g) is even and van-
ishes forg50, there is at most one positive root for a give
k. The resulting maximum values ofki are shown in Fig. 5
for selected values of the anisotropy, in both the RHIC a
LHC scenarios. These curves delineate the respective s
odal boundaries ink space and the isotropic metric employ
in the display ensures that the directional information
meaningful.

For a general mode, whose wave vectork is not perpen-
dicular to thez axis, the situation is more complicated an

 

 

FIG. 4. The wave number of the fastest-growing mode,k0 ~top!,
and the associated maximum growth rateg0 ~bottom!, as functions
of the longitudinal momentum dispersions i for RHIC ~solid! and
LHC ~dashed! scenarios, using either Gaussian or pQCD mom
tum profiles havings'50.3 GeV/c.
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the associated fields and currents are no longer simply
lated tok. In order to illustrate the increased complexity, w
consider here thek dependence of the electric field streng
E and the color current densityj in the Coulomb gauge.~The
results are gauge invariant for electromagnetic plasm!
Thus, the electric fieldE is determined by the following 3
33 matrix equation:

@k2d i j 2kikj2v2e i j ~k!#Ea
j ~k!50. ~34!

Since theyy term never vanishes~and the off-diagonal terms
involving y vanish by symmetry!, we must haveEy50.
Thus, the field vector lies in thexz plane, the plane spanne
by the wave vector and the symmetry axis of the moment
distribution f (p). In the aligned case, the wave vector
perpendicular to the symmetry axis,k5(kx,0,0), and the
resulting electric field is directed along the symmetry ax
E5(0,0,Ez). In the general case, the wave vector has a co
ponent parallel to the symmetry axis,k5(kx,0,kz), and thus
no longer lies in the transverse plane. The angle formed w
the symmetry axis,qk , is determined by tanqk5kx /kz ,
while the polar angle of the associated electric field vec
qE, is determined by

tanqE5
Ex

Ez
5

kxkz2Pxz

kz
21g21Pxx

5
kx

21g21Pzz

kzkx2Pzx
. ~35!

For small values ofkz , qk is near 90°, whileqE is near 0°.
These directions evolve steadily as the magnitude ofkz is

-
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FIG. 5. The maximum value of the longitudinal wave numb
ki

max as a function of the magnitude of the transverse wave num
k' @a modek5(k',0,ki) is unstable ifki,ki

max] for the initial
RHIC ~bottom! and LHC~top! scenarios. The momentum profile
Gaussian, and the various values of the longitudinal momen
dispersionsz are indicated. The vertical and horizontal scales
equal.
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CHROMODYNAMIC WEIBEL INSTABILITIES IN . . . PHYSICAL REVIEW C 68, 034909 ~2003!
increased,qk decreasing andqE increasing, until they be-
come equal just as the maximum value ofkz is reached,
qk„k' ,ki

max(k')…5qE„k' ,ki
max(k')…. It follows that E'k

only whenk is perpendicular to the symmetry axis and th
it is only those modes that have a purely transverse chara
Furthermore, there are no purely longitudinal modes~for
which Eik).

For large values ofkx , whereg becomes small, there i
not much room forkz and the limiting direction does no
deviate much from thex direction~it approaches thex direc-
tion when kx approacheskmax). Obviously, there is mos
room for kz for thosekx values that are in the region o
maximum growth, while for smallkx , where alsog tends to
zero, there is again little room forkz . However, sincekx is
now also small, the direction ofk is significantly affected by
the addition ofkz . The resulting unstable region ink space is
thus a flat disklike volume~with a central depression!, which
is oriented perpendicular to the symmetry axis of the m
mentum profile~the beam axis!.

It also follows thatP•k50 at the spinodal boundary. Thi
feature implies that the limiting direction of the current
perpendicular to the wave vector~and hence to the electri
field as well!. Furthermore, the direction of the currentj
turns in the same sense as the wave vectork, but initially at
a slower rate, so their relative angle never exceeds 90°,k• j
>0.

The evolution of these various directions with the wa
vectork is illustrated in Fig. 6. We see that in the region
largest amplification the degree of reorientation can be s

FIG. 6. For a lattice of wave vectorsk5(k',0,ki) are shown the
direction of the wave vector,ek ~the upper-left line of any pair!,
together with the direction of either the electric field,eE ~left panel!,
or the current densityej ~right panel!, in the standard RHIC scenari
with a Gaussian momentum profile havings i51 GeV/c. These
results have been obtained in the Coulomb gauge.
03490
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stantial, typically amounting toDq'30°. The resulting
modes are rather complicated to describe, since the di
tions of k, E, and j have no simple mutual relationship.

VII. AMPLIFICATION COEFFICIENTS

The environments produced in high-energy nuclear co
sions are endowed with a rapid expansion, primarily in
longitudinal ~beam! direction ẑ. The effective density then
decreases towards zero in the course of time,reff(t)→0. We
shall therefore solve the dispersion equation at succes
times t>t0 and thus obtain a time-dependent growth ra
gk(t) for each wave vectork. ~Such an adiabatic approach
valid only for sufficiently slow evolutions and the resul
should therefore be regarded as approximative.! Since the
maximum wave number for which instabilities exist,kmax, is
proportional to the square root ofreff , it also decreases in
time, kmax(t). Consequently, for each particular wave vec
k, there is a time,tk

max beyond which the associated colle
tive frequencies6vk are real.

Within the adiabatic approximation, the amplitude of
given unstable mode,Ck

6 , evolves as

Ck
6~ t !5Ck

6~ t0!expF6E
t0

t

gk~ t8!dt8G . ~36!

The accumulated increase of the corresponding strengt
then governed by theamplification coefficient@18,19#,

Gk[E
t0

tk
max

gk~ t !dt. ~37!

An elementary analysis shows that if the density falls off
an inverse power of time,reff;t2b, thenGk;k122/b in the
limit of soft modes. Thus the amplification coefficient d
verges unless the falloff is at least quadratic.

In a high-energy nuclear collision, the falloff of the de
sity is initially approximately inversely proportional to time
b'1, due to the rapid longitudinal expansion, but it th
quickens~ultimately to b'3) as the transverse expansio
manifests itself. Thus, if carried through, the adiabatic tre
ment would yield finite amplification coefficients for a
modesk. For simplicity, and to avoid a sensitive dependen
on the long-time behavior for the soft modes, we shall e
ploy a simple exponential falloff,

reff~ t !'reff~ t0!e2dt/t05reff~ t0!F t0

t
1OS t0

2

t2D G , ~38!

wheredt[t2t0 is the elapsed time. This form matches t
initial longitudinal expansion while ensuring thatgk(t) drops
off sufficiently fast at large times to avoid soft divergencie
It thus allows us to evaluate the amplification coefficients
a manner that is insensitive to the long-term behavior of
collision system.

We first calculateGk under the assumption that the m
mentum distribution remains constant in time whilereff
drops off in the above exponential fashion~38!. This is ex-
pected to provide an overestimate of the amplification, si
9-7
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JO”RGEN RANDRUP AND STANISŁAW MRÓWCZYŃSKI PHYSICAL REVIEW C 68, 034909 ~2003!
both expansion and equilibration act to reduce the an
tropy. The resulting amplification coefficients are shown
Fig. 7. The curves all exhibit a steep initial rise followed
a gentle descent for large wave numbers. Since the mo
with small wave numbers are subject to amplification fo
longer time, the curves have their maxima shifted dow
wards relative to thek0 values for the respective initial sce
narios. Thus, the largest amplification coefficients are
tained fork''250 GeV/c in the RHIC scenario and fork'

'400 GeV/c in the LHC scenario. Their largest values a
about 0.7 and 0.9, respectively, and they are reached fos i
'2 –4 GeV/c.

Since the pCDQ momentum profile generally leads
growth ratesgk that are larger than those obtained with t
Gaussian profile~see above!, the resulting amplification co
efficientsGk are correspondingly larger, by about 20% in t
region of maximum amplification.

 

 

 

 

 

 

 

 

FIG. 7. The amplification coefficientGk for purely transverse
Weibel modes as a function of the wave numberk' , for the ideal-
ized case when the momentum profile remains frozen throug
while the density decreases exponentially according to Eq.~38!
calculated for the RHIC scenario with either Gaussian~top! or
pQCD ~bottom! profiles having the specified longitudinal width
sz .
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VIII. MOMENTUM RELAXATION

In the above analysis, we have taken account of the
creasing density, but kept the momentum profiles constan
more realistic treatment must take account of the dynam
evolution of the momentum profile as well. Of particul
importance are the rapid longitudinal expansion and the p
sibility of collisions among the partons. In order to elucida
the quantitative importance of these agencies, we allow
momentum distribution to evolve as it would if subjected
a combination of idealized longitudinal expansion and ela
Boltzmann collisions, while still assuming that the over
effective density behaves as in Eq.~38!. ~Thus, although we
have neglected the possible influence of the parton-pa
collisions on the dispersion relation, we do now consid
their effect on the anisotropy in the medium.!

If we ignore the effect of the expansion and treat t
collisions in the relaxation-time approximation, the equati
of motion for the momentum distribution is simple:

]

]t
f~p,t !52

1

tc
@f~p,t !2f̃~p!#, ~39!

where f̃(p) is the equilibrium profile~which is isotropic!
and tc is the relaxation time. If we are only interested in th
momentum variancess i

2(t)[*d3p pi
2f(p,t), then Eq.~39!

reduces to a set of coupled equations

]

]t
s i

2~ t !52
1

tc
@s i

2~ t !2s̃2#, ~40!

wheres̃2 is the equilibrium variance. The evolution is the
the familiar exponential relaxation,

s i
2~ t !5@s i

2~ t !2s̃2# e2(t2t0)/tc1s̃2. ~41!

We now include a longitudinal scaling expansion, whi
causes the density to decrease steadily in time,r(t)
5r(t0)t0 /t. @The scaling scenario is boost invariant, so
suffices to consider what happens in a rest frame at the
gin, wheret andz are identical to the general variablest and
h.# Since the collision rate is inversely proportional to t
density,tc

215rs v̄, it is reasonable to assume that it exhib
a similar decrease,tc

215C/t. The equations of motion~40!
are then modified:

]

]t
sx

252
C

t
@sx

22s̃2#, ~42!

]

]t
sz

252
C

t
@sz

22s̃2#2
1

t
sz

2 , ~43!

The last term in Eq.~43! seeks to flatten the local momentu
distribution in response to the longitudinal stretching, whi
at the same time reduces the collision rate.

The resulting dynamics is then more complicated. F
simplicity, we shall assume that the sum of the moment
variances is preserved by the Boltzmann collisions, as
elastic nonrelativistic collisions. The equilibrium variance

ut
9-8
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CHROMODYNAMIC WEIBEL INSTABILITIES IN . . . PHYSICAL REVIEW C 68, 034909 ~2003!
a given timet is then given bys̃25 1
3 (2sx

21sz
2). The equa-

tions of motion~42! and~43! can then be rewritten on matri
form,

]

]tS sx
2

sz
2D 52

1

3t S C 2C

22C 312CD S sx
2

sz
2D . ~44!

The eigenvalues of the time-independent coupling mat
l7 , are determined by the following secular equation:

l7
2 23~11C!l713C50, ~45!

and the eigenvalues of Eq.~44! areL752l7/3t, i.e.,

L7~ t !5
1

2t
$11C7@~11C!22 4

3 C#1/2%.0. ~46!

It then follows that the associated normal variancess7
2 fall

off as inverse powers of time,

s7
2 ~ t !

s7
2 ~ t0!

5e* t0

t L7(t8)dt85e2(l7/3)* t0

t dt8/t85S t0

t D l7/3

.

~47!

They represent approximately the distortionsz
22sx

2 and
~half! the total variance 2sx

21sz
2 , respectively.

Since the Cartesian variances can be expressed in term
the normal variances,

sx
25N@s2

2 2es1
2 #, sz

25N@s1
2 12es2

2 #, ~48!

with N 215112e2 and

e5
1

2C
$ 3

2 @11 2
3 C1C2#1/22 3

2 2 1
2 C%.0, ~49!

their time evolution can be readily obtained. It is seen that
the variances tend to zero for any~positive! value of the
collision constantC, thereby making it possible to simulta
neously achieve the continual longitudinal shrinkage cau
by the expansion,sz→0, and the approach to isotrop
caused by the collisions,sz→sx .

The effects of the expansion and equilibration on the a
plification coefficients is illustrated in Fig. 8 for the Gaussi
momentum profiles. In view of our previous findings, w
expect that the effects are similar for pQCD profiles. We n
that the stretching produces an only relatively moderate
crease~about 20%!, whereas the collisions reduce the amp
fication coefficients by about a factor of 3. The combin
effect is then a reduction ofGk by a factor of nearly 4. The
collision rate has been somewhat arbitrarily set toC51,
corresponding to an initial Boltzmann relaxation time
tc(t0)5t0. Our results show that there is a considerable s
sitivity to this quantity, which might be better estimated fro
microscopic parton cascade models@20#.

In order to further elucidate the effect of scaling expa
sion and the Boltzmann relaxation, we show in Fig. 9
effect of including both in the approximately optimal RHI
and LHC scenarios, for which the initial longitudinal var
ance is arounds i52 GeV/c ~see Fig. 7!. As already noted
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in connection with Fig. 8, the inclusion of these effects le
to an overall reduction of more than a factor of 4, relative
the simple idealized case in which the momentum profi
remain frozen as the density decreases according to Eq.~38!
~shown in Fig. 7!. The results obtained with pQCD profile
are quite similar, apart from the values being overall sligh
larger ~about 20% for the most amplified modes!.

Of course, if the Boltzmann relaxation time is increase
the effect of the collisions will decrease, and vice ver
Since the actual collision rate is hard to assess, it may o

FIG. 8. The effect of the Bjorken expansion and the Boltzma
relaxation on the amplification coefficientGk , for the RHIC case
with s i(t0)51 GeV/c in various dynamical scenarios: Frozen m
mentum distributions, as in Fig. 7~solid!; flattening of the momen-
tum distribution due to the stretching of the system~long dashes!;
relaxation of the momentum distribution due to the collisions,
sumingC51 sotc(t0)50.4 fm/c ~short dashes!; and both of those
agencies active~dots!.

FIG. 9. The effect of the scaling expansion and the Boltzma
equilibration on the amplification coefficientGk for RHIC and LHC
scenarios. The momentum profiles are Gaussian and have an i
dispersion ofs i(t0)52 GeV/c, for which the largest net amplifi-
cation is obtained. The solid curves are those obtained for fro
profiles ~shown in Fig. 7!, while the dashed curves are obtained
the presence of both the scaling expansion and the Boltzmann
lisions ~with C51).
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JO”RGEN RANDRUP AND STANISŁAW MRÓWCZYŃSKI PHYSICAL REVIEW C 68, 034909 ~2003!
be safe to conclude that the collisions are quantitatively
portant, while the~somewhat more complicated! effect of the
expansion appears to be less crucial.

IX. CONCLUDING REMARKS

In the present study, we have sought to make quantita
estimates of the importance of the Weibel instabilities in
chromodynamic plasma created early on in a high-ene
nuclear collision. Any quantitative calculation must rely o
specific assumptions about the plasma environment, inc
ing its dynamical evolution, which is presently only rath
poorly known. Therefore, our results are correspondingly
proximate. Fortunately, though, the simple scaling proper
of the Weibel dispersion relation makes it relatively easy
infer what the result would have been if different input va
ues had been employed. Therefore, the utility of our res
extends beyond the specific cases presented as illustrat

As a concrete framework for our discussion, we ha
adopted two standard scenarios, one appropriate for R
and the other for LHC, in terms of the coupling constantas ,
the initial effective parton densityreff(t0), and the corre-
sponding starting timet0. Furthermore, we have employe
axially symmetric momentum profiles that are either Gau
ian or pQCD-motivated~leading to a power falloff in the
transverse direction!. We have then kept the transverse m
mentum dispersion constant ats'5300 MeV/c, while ex-
ploring the dependence on the~local! longitudinal spreads i
~for a given density and profile type, the results depend o
on the ratios i /s').

Going beyond earlier treatments of these modes, we h
permitted the wave vectork to have a component along th
symmetry axis as well, thus extending the consideration
modes that are not purely transverse. The associated p
ization tensor is then no longer diagonal. Generally
growth ratesgk decrease as the parallel component ofk is
increased, and the resulting region of instability ink space is
widest in the region where the aligned modes have th
maximal growth rates. Furthermore, the electric field o
given mode,Ek , as well as the induced currentjk form an
angle with the symmetry axis, as we illustrated in the Co
lomb gauge. The electric field then turnstowardsk and fi-
nally becomes parallel tok at the spinodal boundary, whil
the current density turns in the same sense ask. Being ini-
tially aligned with the symmetry axis~and thus perpendicula
to k), it turns at first at a slightly slower rate, so its ang
with k becomes smaller than 90°. It then starts turning a
faster rate and reverts to being perpendicular tok at the
boundary, where it is thus perpendicular toE.

The largest growth ratesgk are obtained for modes whos
wave numbers are perpendicular to the symmetry axis
they have a transverse character,E'k. Over a wide range of
s i values, these wave numbers are typically arou
500 MeV at RHIC and 900 MeV at LHC, corresponding
wave lengthsl0 of 2.5 fm and 1.4 fm, respectively. The co
responding growth rates are generally larger for the pQ
profiles, but only by about 20% for the fastest modes. Ho
ever, as the density decreases in the course of time,
higher wave numbers are progressively disfavored, as
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spinodal region contracts. Therefore, the resulting amplifi
tion coefficient,Gk5*gk(t)dt, which governs the accumu
lated degree of collective growth for a givenk, peaks at
somewhat lower wave numbers, namely, atk'250 GeV/c in
the RHIC scenario and atk'400 GeV/c in the LHC sce-
nario. In the idealized case when the momentum profi
f(p) are kept frozen in time, the largest values ofGk are
reached fors i'2 –4 GeV/c and amount to about 0.7 an
0.9, respectively, for Gaussian profiles and about 20% m
for pQCD profiles. The inclusion of a longitudinal scalin
expansion reduces these numbers only moderately~by about
20%!, so this dynamical complication is not so crucial. B
contrast, the inclusion of elastic Boltzmann collisions amo
the partons leads to a significant reduction in the degree
instability, as the associated relaxation drives the momen
profile towards isotropy. For the adopted schematic collis
rate, which corresponds to an initial relaxation time
tc(t0)5t0, the reduction amounts to roughly a factor of 3

Thus, overall, we find that the degree of amplification
the Weibel filamentation modes is not expected to be sp
tacular for any particular wave vectork. On the other hand
it appears that the effect may not be negligible either. F
thermore, it should be kept in mind that there are typicall
large number of such unstable collective modes, so th
combined effect on the overall dynamics may be significa

We therefore wish to conclude by speculating about
possible dynamical consequences of the color filamenta
phenomenon. One obvious aspect concerns the energy d
pation. Since the agitation of these collective modes wo
drain energy from the background system, the occurrenc
color filamentation presents an additional agency for ene
dissipation. Therefore, in principle, to the extent that the
modes are agitated, one may expect a correspondingly fa
equilibration of the parton system.

Furthermore, since the perfect azimuthal symmetry in
idealized head-on collision will be spontaneously broken
the appearance of the color currents, one may generally
pect that the emergent filamentation pattern will manif
itself in the angular correlations among the final hadrons
particular, a nonstatistical distribution of collective ener
flow will emerge along the local Poynting vectors associa
with each amplified filamentation mode. This expectation
qualitatively different from that based on the parton casc
simulations@20#. The breaking of the azimuthal symmetry
then caused by jets produced in hard parton-parton inte
tions and, consequently, the effect is carried by only a f
partons with large transverse momenta. By contrast, du
the collective character of the filamentation instability, t
azimuthal symmetry breaking will presumably involve
large number of partons having relatively small transve
momenta.

It has already been speculated that color filamenta
may have observable consequences for the elliptic flow@21#,
based on the argument that the parton trajectories ten
become concentrated within the centers of the filaments.
conservation of phase-space volume then expands the
mentum distribution perpendicular to the filaments. A cor
sponding quantum-mechanical argument can be made on
basis of the uncertainty relation.
9-10
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Finally, it would appear that color filamentation mig
delay hadronization. This possibility is due to the basic f
that no hadronization can occur in the presence of color
rents, since the hadronic phase is constituted entirely of
orless entities and thus unable to sustain any colored a
tions. Thus, any collective color currents induced by
filamentation phenomenon would have to subside before
chromodynamic plasma could transform itself into an ass
bly of color singlets. It would thus be of interest, in a futu
study, to estimate how quickly the induced color curre
dissolve again.

In conclusion, while it appears that color filamentati
may occur in the early parton plasma, a quantitative ass
ment of the significance of the phenomenon will require
tailed dynamical treatments that are not yet sufficiently
.
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veloped. As a step in this direction, it might be interesting
solve the self-consistent Vlasov equations~10!–~12! in sche-
matic collision scenarios in order to investigate how the fi
mentation modes manifest themselves.
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